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Deprotonation of the benzylic carbon of a chromium tricarbonyl complex of a benzyl ether followed by
reaction with N-fluorobenzenesulfonimide (NFSI) generated a species that reacted with oxygen, sulfur
and carbon nucleophiles.
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Some time ago, we demonstrated that chromium tricarbonyl
complexes of benzyl ethers such as 1 react with the chiral diamide
derived from butyllithium / chiral diamine 2 and electrophiles such
as iodomethane and diphenyl disulfide to give chiral ether com-
plexes 3 and 4, respectively (Scheme 1).1 The reactions typically
gave good yields of products, which were generated in high enan-
tiomeric excess.

Due to the well-established importance of fluorine-containing
compounds in medicinal chemistry,2 and ongoing interest in new
methods for introducing fluorine into organic compounds,3 we
decided to investigate whether or not we could use the reaction
outlined in Scheme 1 to introduce a fluorine atom into benzylic
ethers under good stereochemical control. In an initial reaction,
diamine (+)-2 was treated with butyllithium and the benzylic ether
complex 54 was added to the resulting deep-red solution at �78 �C.
SelectfluorTM (1.5 equiv) in acetonitrile, was then added as a source
of electrophilic fluorine and after 30 min at �78 �C, methanol
(40 equiv) was added to quench the reaction. Work-up led to the
isolation of the acetal complex 6 in 45% yield, the aldehyde com-
plex 7 (28%) and recovered substrate 5 (6%) (Scheme 2). Although
the desired fluorination had not occurred under these conditions,5

the conversion of ether 5 to acetal 6 is, to the best of our knowl-
edge, an unprecedented transformation in arene chromium
tricarbonyl chemistry and so we decided to investigate this trans-
formation further.
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on).
We first wished to establish the origins of the two methoxy
groups in acetal 6. To do this, the original experiment was repeated
but the quench was carried out using deuterated methanol. Isola-
tion of the acetal and scrutiny of its 1H NMR spectrum and mass
spectrum established that complex 8 contained one methoxy
group derived from substrate 5 and one deuterated methoxy group
derived from deuterated methanol. This is consistent with alde-
hyde 7 being derived from acetal 8 rather than the reverse. Next,
two reactions were performed using diamines (+)- and (�)-2 to
form the diamide base and using isopropanol to quench the reac-
tion. The acetal complex produced in each reaction was isolated
and examined by chiral HPLC which revealed that the enantiopuri-
ty of each was negligible (5%). Thus the achiral base LDA was em-
ployed henceforth. Subsequent optimisation experiments for the
conversion of ether 5 into acetal 6 included the employment of
the THF-soluble electrophilic fluorine source N-fluorobenzene-
sulfonimide (NFSI)6 in place of SelectfluorTM and this resulted in a
4 86% 97%PhPh
(+)-2[Cr] = Cr(CO)3 R = SPh

Scheme 1. Asymmetric functionalisation of chromium tricarbonyl complexes of
benzyl ethers.



Table 1
Substitution of a benzylic hydrogen of complex 5 using oxygen, sulfur, nitrogen and
carbon nucleophiles as depicted in Scheme 3

Entry NuH or NuSiMe3 Product Nu Product yield
(%)

Yield of 7
(%)

1 MeOH 6 OMe 79 10
2 CD3OD 8 OCD3 76 13
3 PrnOH 9 OPrn 65 17a

4 PriOH 10 OPri 59 34
5 ButOH 11 OBut 36 47
6 PhOH 12 OPh 78 5
7 BnOH 13 OBn 85 —b

8 BnNH2 14 NHBn 9 70c

9 BnSH 15 SBn 75 5
10 PhC(OSiMe3)@CH2

d 16 CH2COPh 68 6

a A small amount (8%) of the bispropoxy acetal was also isolated from this
reaction.

b The amount of aldehyde produced in this reaction was not quantified as it co-
ran with large amounts of benzyl alcohol.

c Significant quantities of the benzyl imine of 7 (17%) were isolated from this
reaction.

d LiClO4 was added to this reaction to provide a more weakly coordinating anion
for the positively charged intermediate.
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Scheme 2. Initial observation of the ether-to-acetal transformation.
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dramatic increase in the yield of acetal 6 to 79% (Table 1, entry 1).
The conversion of 5 into 8 using deuterated methanol also in-
creased using NFSI from 46% to 76% (Table 1, entry 2). The scope
and limitations of the substitution of a benzylic hydrogen by a
nucleophile on chromium tricarbonyl complexes of benzyl ethers
were subsequently studied using NFSI under the conditions de-
picted in Scheme 3.7

The effect of increasing the branching of the incoming nucle-
ophile was examined first. As the bulk of the alcoholic nucleo-
phile increased from methanol through propanol and
isopropanol to tert-butanol, the yield of the resulting acetal fell
from 79% to 36% whilst the yield of aldehyde 7 rose from 10%
to 47% (Table 1, entries 1–5). Acetal production proved to be
efficient with phenol (Table 1, entry 6) and benzyl alcohol (Table
1, entry 7). The tolerance of the reaction to nucleophiles other
than alcohols was examined next. Whilst benzylamine proved
But
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5

Scheme 3. Substitution of a benzylic hydrogen of complex 5
predictably to be a poor nucleophile (Table 1, entry 8), we were
pleased to discover that addition of benzyl thiol gave a good
yield of the corresponding thioacetal (Table 1, entry 9), and addi-
tion of 1-phenyl-1-(trimethylsilyloxy)ethene led to carbon–car-
bon bond formation and the production of a branched ether
(Table 1, entry 10).

Whilst the mechanism for the reactions described above has not
been examined in detail yet, the results obtained to date are con-
sistent with the following hypothesis. First of all, LDA removes a
benzylic hydrogen from the chromium complex to give an anionic
species. This is then oxidised by NFSI to give an electrophilic spe-
cies which is then intercepted by the nucleophile. Slow addition
of an ineffective nucleophile such as tert-butanol to the benzylic
centre leads to competing addition at the methyl group of the
ether, perhaps by fluoride anions, and the formation of the alde-
hyde 7.

Cations, anions and radicals centred on the benzylic carbon
adjacent to arene chromium tricarbonyl units are well established
species, all of which have found widespread application in diverse
areas of organic synthesis.8 To the best of our knowledge, the reac-
tion documented above represents the first example of an oxida-
tive transformation of a species created by a base, presumably an
anion, to a species that is reactive towards nucleophiles. It comple-
ments the reductive transformation of a benzylic cation equivalent
to an anion which has been achieved using 2.1 equiv of the single
electron reducing agent, lithium 4,40-di-tert-butylbiphenyl (LiD-
BB).9 It is interesting to note other changes in polarity that have
been achieved in organometallic chemistry. For example, cations
centred on the propargylic carbon adjacent to alkyne hexacarbonyl
dicobalt species have been reduced to radicals using zinc, provid-
ing an entry to a range of new synthetic pathways for these versa-
tile alkyne derivatives.10 Elsewhere, the polarity of palladium allyl
cations has been reversed by samarium diiodide to give anionic
species in a process that has been postulated to proceed via a pal-
ladium allyl radical species.11

In summary we have demonstrated for the first time that the
benzylic carbon of an arene chromium tricarbonyl complex may
be deprotonated and the resulting anion oxidised to a species that
reacts with oxygen, sulfur and carbon nucleophiles.
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using oxygen, sulfur, nitrogen and carbon nucleophiles.
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Compound (6): yellow solid; mp 74�75 �C. Rf = 0.29 (SiO2; hexane/Et2O, 9:1). IR
(neat, cm�1): 1946, 1845, 1105, 1052. 1H NMR (400 MHz, CDCl3) d 5.56 (d,
J = 7.0 Hz, 2H, 2CCrH), 5.43 (d, J = 7.0 Hz, 2H, 2CCrH), 5.17 (s, 1H, CH), 3.42 (s, 6H,
2CH3O), 1.30 (s, 9H, 3CH3). 13C NMR (100 MHz, CDCl3) d 233.0 (3CO), 122.2 (C),
107.4 (C), 101.3 (CH), 91.7 (2CCrH), 89.5 (2CCrH), 53.5 (2CH3O), 33.9 (C), 31.0
(3CH3). MS (EI) m/z (%): 344 (M+, 44), 313 (31), 260 (82), 200 (100), 177 (78), 52
(83). Anal. Calcd for C16H20CrO5 (344.32): C, 55.81; H, 5.85. Found: C, 55.89; H,
5.78.
Compound (7): orange solid mp 66�67 �C. Rf = 0.20 (SiO2; hexane/Et2O, 9:1). IR
(neat, cm�1): 1957, 1866, 1694. 1H NMR (400 MHz, CDCl3) d 9.54 (s, 1H, CHO),
5.92 (d, J = 6.0 Hz, 2H, 2CCrH), 5.43 (d, J = 6.0 Hz, 2H, 2CCrH), 1.38 (s, 9H, 3CH3).
13C NMR (100 MHz, CDCl3) d 230.7 (3CO), 187.9 (CHO), 127.0 (C), 94.0 (C), 93.9
(2CCrH), 88.0 (2CCrH), 34.5 (C), 30.8 (3CH3). MS (EI) m/z (%): 298 (M+, 34), 214
(100), 197 (13), 177 (12), 147 (57), 91 (18), 52 (78). Anal. Calcd for C14H14CrO4

(298.25): C, 56.38; H, 4.73. Found: C, 56.43; H, 4.81.
Compound (8): yellow solid; mp 64�65 �C. Rf = 0.31 (SiO2; hexane/Et2O, 9:1). IR
(neat, cm�1): 1946, 1847, 1110, 1054. 1H NMR (400 MHz, CDCl3) d 5.56 (d,
J = 6.5 Hz, 2H, 2CCrH), 5.43 (d, J = 6.5 Hz, 2H, 2CCrH), 5.17 (s, 1H, CH), 3.42 (s, 3H,
CH3O), 1.31 (s, 9H, 3CH3). 13C NMR (100 MHz, CDCl3) d 233.3 (3CO), 122.6 (C),
107.8 (C), 101.3 (CH), 91.8 (2CCrH), 89.5 (2CCrH), 53.5 (CD3O, CH3O), 33.9 (C),
31.1 (3CH3). MS (EI) m/z (%): 347 (M+, 40), 316 (19), 313 (17), 263 (100), 201
(92), 180 (42), 177 (38), 52 (55). Anal. Calcd for C16D3H17CrO5 (347.34): C,
55.33; H, 6.67. Found: C, 55.36; H, 6.70.
Compound (9): yellow oil. Rf = 0.31 (SiO2; hexane/Et2O, 9:1). IR (neat, cm�1):
1956, 1865, 1103, 1053. 1H NMR (400 MHz, CDCl3) d 5.55 (d, J = 6.5 Hz, 2H,
2CCrH), 5.49 (d, J = 6.0 Hz, 1H, CCrH), 5.43 (d, J = 6.5 Hz, 1H, CCrH), 5.24 (s, 1H,
CH), 3.64–3.49 (m, 2H, CH2O), 3.40 (s, 3H, CH3O), 1.68 (sextet, J = 7.0 Hz, 2H,
CH2), 1.31 (s, 9H, 3CH3), 0.99 (t, J = 7.5 Hz, 3H, CH3). 13C NMR (100 MHz, CDCl3)
d 233.3 (3CO), 122.7 (C), 108.1 (C), 100.5 (CH), 91.7 (CCrH), 91.6 (CCrH), 89.8
(2CCrH), 68.6 (CH2O), 53.0 (CH3O), 33.9 (C), 31.1 (3CH3), 22.9 (CH2), 10.7 (CH3).
MS (EI) m/z (%): 372 (M+, 37), 341 (32), 313 (28), 257 (42), 230 (32), 200 (80),
177 (65), 52 (68). Anal. Calcd for C18H24CrO5 (372.38): C, 58.06; H, 6.50. Found:
C, 58.09; H, 6.52.
Compound (10): yellow solid; mp 39�41 �C. Rf = 0.39 (SiO2; hexane/Et2O, 9:1).
IR (neat, cm�1): 1953, 1862, 1103, 1046. 1H NMR (400 MHz, CDCl3) d 5.56 (d,
J = 6.0 Hz, 1H, CCrH), 5.53 (d, J = 6.5 Hz, 2H, 2CCrH), 5.43 (d, J = 6.0 Hz, 1H, CCrH),
5.36 (s, 1H, CH), 4.03 (sept, J = 6.0 Hz, 1H, CH), 3.33 (s, 3H, CH3O), 1.31 (s, 9H,
3CH3), 1.28 (d, J = 6.0 Hz, 6H, 2CH3). 13C NMR (100 MHz, CDCl3) d 233.3 (3CO),
123.0 (C), 108.4 (C), 98.6 (CH), 91.5 (CCrH), 91.2 (CCrH), 90.3 (CCrH), 90.2 (CCrH),
70.2 (CH), 51.8 (CH3O), 33.9 (C), 31.1 (3CH3), 23.1 (CH3), 22.0 (CH3). MS (EI) m/z
(%): 372 (M+, 29), 341 (25), 313 (20), 257 (35), 230 (32), 200 (100), 52 (68).
Anal. Calcd for C18H24CrO5 (372.38): C, 58.06; H, 6.50. Found: C, 58.13; H, 6.47.
Compound (11): yellow solid; mp 85�86 �C. Rf = 0.37 (SiO2; hexane/Et2O, 9:1).
IR (neat, cm�1): 1953, 1872, 1111, 1043. 1H NMR (400 MHz, CDCl3) d 5.64 (d,
J = 6.0 Hz, 2H, 2CCrH), 5.52–5.40 (m, 3H, 2CCrH, CH), 3.19 (s, 3H, CH3O), 1.37 (s,
9H, 3CH3), 1.32 (s, 9H, 3CH3). 13C NMR (100 MHz, CDCl3) d 233.4 (3CO), 123.7
(C), 108.8 (C), 94.0 (CH), 91.5 (CCrH), 91.2 (CCrH), 90.8 (CCrH), 90.4 (CCrH), 75.9
(C), 49.1 (CH3O), 33.9 (C), 31.0 (3CH3), 28.5 (3CH3). MS (EI) m/z (%): 386 (M+,
34), 355 (18), 330 (20), 313 (30), 302 (32), 214 (100), 57 (28), 52 (62). Anal.
Calcd for C19H26CrO5 (386.40): C, 59.06; H, 6.78. Found: C, 58.96; H, 6.81.
Compound (12): yellow solid; mp 75�76 �C. Rf = 0.38 (SiO2; hexane/Et2O, 9:1).
IR (neat, cm�1): 1954, 1865, 1221, 1084. 1H NMR (400 MHz, CDCl3) d 7.38–7.32
(m, 2H, Ar), 7.16–7.08 (m, 3H, Ar), 5.94 (s, 1H, CH), 5.64 (d, J = 6.5 Hz, 1H, CCrH),
5.58–5.49 (m, 3H, 3CCrH), 3.47 (s, 3H, CH3O), 1.33 (s, 9H, 3CH3). 13C NMR
(100 MHz, CDCl3) d 233.0 (3CO), 156.5 (C), 129.7 (2CH), 123.1 (2CH, C), 117.9
(2CH), 106.9 (C), 100.3 (CH), 91.3 (CCrH), 91.0 (CCrH), 89.9 (CCrH), 89.8 (CCrH),
53.4 (CH3O), 34.0 (C), 31.1 (3CH3). MS (EI) m/z (%): 406 (M+, 8), 322 (25), 177
(100), 162 (25), 91 (11). Anal. Calcd for C21H22CrO5 (406.39): C, 62.06; H, 5.46.
Found: C, 62.15; H, 5.37.
Compound (13): yellow solid; mp 70�72 �C. Rf = 0.47 (SiO2; hexane/Et2O, 9:1).
IR (neat, cm�1): 1945, 1861, 1105, 1024. 1H NMR (400 MHz, CDCl3) d 7.44–7.37
(m, 5H, Ar), 5.56 (d, J = 6.5 Hz, 1H, CCrH), 5.52 (d, J = 6.5 Hz, 1H, CCrH), 5.49 (d,
J = 6.5 Hz, 2H, 2CCrH), 5.39 (s, 1H, CH), 4.68 (s, 2H, CH2), 3.44 (s, 3H, CH3O), 1.32
(s, 9H, 3CH3). 13C NMR (100 MHz, CDCl3) d 233.2 (3CO), 137.3 (C), 128.5 (2CH),
128.0 (2CH), 127.9 (CH), 122.8 (C), 107.6 (C), 100.1 (CH), 91.5 (CCrH), 91.4
(CCrH), 89.9 (CCrH), 89.8 (CCrH), 68.2 (CH2), 53.4 (CH3O), 33.9 (C), 31.1 (3CH3).
MS (EI) m/z (%): 420 (M+, 25), 336 (100), 245 (22), 213 (45), 200 (54), 52 (57).
Anal. Calcd for C22H24CrO5 (420.42): C, 62.85; H, 5.75. Found: C, 62.82; H, 5.73.
Compound (14): yellow oil. Rf = 0.28 (SiO2; hexane/Et2O, 9:1). IR (neat, cm�1):
3150, 1958, 1871, 1091. 1H NMR (400 MHz, CDCl3) d 7.40–7.32 (m, 5H, Ar), 5.56
(d, J = 6.5 Hz, 2H, 2CCrH), 5.27 (d, J = 6.5 Hz, 2H, 2CCrH), 4.83 (s, 1H, CH), 4.39
(dd, J = 14.5, 4.5 Hz, 1H, 1/2CH2), 4.27 (dd, J = 14.5, 4.5 Hz, 1H, 1/2CH2), 3.48 (s,
3H, CH3O), 1.33 (s, 9H, 3CH3). 13C NMR (100 MHz, CDCl3) d 233.1 (3CO), 141.2
(C), 129.0 (2CH), 127.9 (CH), 127.4 (2CH), 121.2 (C), 111.3 (C), 92.5 (CCrH), 91.8
(CCrH), 90.3 (2CCrH), 69.6 (CH), 53.5 (CH3O), 47.1 (CH2), 33.7 (C), 30.5 (3CH3).
MS (EI) m/z (%): 419 (M+, 10), 335 (50), 313 (60), 283 (43), 260 (54), 177 (100),
52 (65). HRMS (EI) calcd for C22H25NCrO5 (M+): 419.1187; found: 419.1186.
Compound (15): yellow solid; mp 93�95 �C. Rf = 0.46 (SiO2; hexane/Et2O, 9:1).
IR (neat, cm�1): 1947, 1868, 1089. 1H NMR (400 MHz, CDCl3) d 7.28–7.25 (m,
5H, Ar), 5.53 (d, J = 7.0 Hz, 1H, CCrH), 5.50 (d, J = 7.0 Hz, 1H, CCrH), 5.45 (d,
J = 7.0 Hz, 1H, CCrH), 5.18 (d, J = 7.0 Hz, 1H, CCrH), 5.14 (s, 1H, CH), 3.72 (AB
system, J = 13.5 Hz, 2H, CH2), 3.54 (s, 3H, CH3O), 1.29 (s, 9H, 3CH3). 13C NMR
(100 MHz, CDCl3) d 233.5 (3CO), 137.6 (C), 128.9 (2CH), 128.5 (2CH), 127.1
(CH), 121.5 (C), 111.4 (C), 92.4 (CCrH), 91.8 (CCrH), 89.0 (CCrH), 88.1 (CCrH), 85.3
(CH), 56.7 (CH3O), 33.9 (C), 32.2 (CH2), 31.2 (3CH3). MS (EI) m/z (%): 436 (M+,
30), 352 (100), 322 (58), 313 (22), 237 (68), 231 (53), 52 (73). Anal. Calcd for
C22H24SCrO4 (436.48): C, 60.54; H, 5.54; S 7.35. Found: C, 60.52; H, 5.47; S, 7.32.
Compound (16): orange oil. Rf = 0.22 (SiO2; hexane/Et2O, 9:1). IR (neat, cm�1):
1951, 1859, 1685, 1098. 1H NMR (400 MHz, CDCl3) d 7.99 (d, J = 7.5 Hz, 2H, Ar),
7.63 (t, J = 7.5 Hz, 1H, Ar), 7.50 (t, J = 7.5 Hz, 2H, Ar), 5.56 (d, J = 6.5 Hz, 1H,
CCrH), 5.49–5.44 (m, 2H, 2CCrH), 5.40 (d, J = 6.5 Hz, 1H, CCrH), 4.73 (dd, J = 7.5,
4.0 Hz, 1H, CH), 3.62 (dd, J = 17.0, 7.5 Hz, 1H, 1/2CH2), 3.54 (s, 3H, CH3O), 3.20
(dd, J = 17.0, 4.0 Hz, 1H, 1/2CH2), 1.34 (s, 9H, 3CH3). 13C NMR (100 MHz, CDCl3)
d 233.4 (3CO), 196.8 (CO), 136.8 (C), 133.5 (CH), 128.7 (2CH), 128.3 (2CH),
123.8 (C), 111.9 (C), 90.5 (CCrH), 90.4 (CCrH), 90.3 (CCrH), 90.2 (CCrH), 76.8 (CH),
58.8 (CH3O), 47.2 (CH2), 33.9 (C), 31.1 (3CH3). MS (EI) m/z (%): 432 (M+, 10), 314
(22), 200 (63), 177 (100), 147 (57), 105 (43), 52 (62). Anal. Calcd for C23H24CrO5

(432.43): C, 63.88; H, 5.59. Found: C, 63.79; H, 5.51.
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